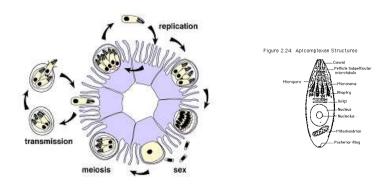
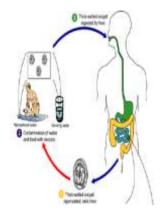
Epidemiological study of *Cryptosporidium* at the wildlife-livestock and human interface in the western boundaries of the Kruger National Park

> Nada Abu Samra, PhD student Supervisors: Prof Peter Thompson, Ferran Jori & Amidou Samie Section of Epidemiology Department of Production Animal Studies Faculty of Veterinary Science University of Pretoria



Cryptosporidium spp.


- Protozoan parasite
- Replicates in the small intestine of a large number of vertebrates (mammals, birds & reptiles)

Cryptosporidium spp.

Main source of infection: contaminated environment by faeces

- Oocysts: immediately infectious when excreted
- Very stable & survive up to 6 months in a moist & cool environment
- Unaffected by chlorine or other disinfectants added to water

Cryptosporidium spp.

Phylum: Apicomplexa 16 species: C. andersoni C. baileyi * * Cryptosporidium spp C. bovis identified in human C. cervine* C. canis* * Known to be of major C. felis* zoonotic importance C. galli C. hominis* C. melagridis* C. molnari C. muris* C. parvum* C. saurophilum C. serpentis C. suis* C. wrairi

Cryptosporidium spp. in humans & animals

 Significant morbidity & mortality in young & immunocompromised individuals:

<u>Human</u> - among **young children** causes 45% of diarrheal deaths in Bangladesh, Brazil & in several African countries

<u>Human</u> - life-threatening diahrrea in **HIV positive pateints** & therefore rural population in southern Africa with the highest prevalence of HIV/AIDS worldwide, are particularly at risk

<u>Livestock</u> - important cause of diarrhoea in calves (1 -3 week); adults shed the parasite without symptoms

<u>Wildlife</u> – identified as reservoirs; infection appears to be asymptomatic

Cryptosporidium spp. in humans & animals

No specific treatment available:

- Livestock in calves quinazolina used in some europeen countries; its efficacy has not been demonstrated
- Humans no drug effectively treats cryptospoiriosis; only reduces disease severity in some cases

Prevalences of Cryptosporidium in Africa

In Wildlife

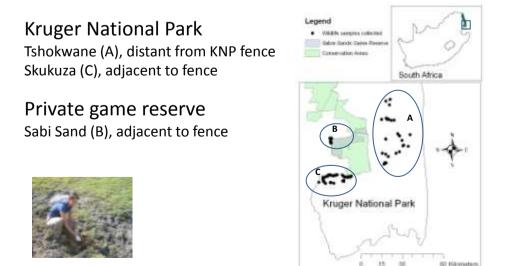
Tanzania: African Buffalo: 22% Zebras: 28% Wildebeest: 27% South Africa: No data

In Livestock

Tanzania: 5.3% in calves Uganda: 38% in calves Zambia: 19.2% in calves South Africa: No data

In Human

Uganda: 25% in diarrhoeic children Guina Bissau: 7% in children Tanzania: 17.3% in HIV patients South Africa: 18% school children & Hospital patients (Samie et al., 2006)


Objective

- Determine the zoonotic importance of *Cryptosporidium* spp. at the wildlife, livestock & human interface in KNP
- Understand the epidemiological patterns of Cryptosporidium spp. among the different compartments (wildlife, livestock and human)

Research Questions

- 1. Are wildlife species in KNP a reservoir of *Cryptosporidium* ?
- 2. What is the prevalence of *Cryptosporidium* in livestock adjacent to KNP?
- 3. Is *Cryptosporidium* a neglected zoonosis in human communities living close to the KNP?
- 4. What are the epidemiological patterns of circulation and transmission of *Cryptosporidium* at the wildlife/livestock/human interface in KNP?

Wildlife: Study Area

Wildlife: Material & Methods

Collection of faecal samples from wildlife :

- Three of the most commonly seen species
- Collected during dry & rainy seasons 2008/2009

	Skukuza	Sabie Sand	Tshokwane	Total
Buffalo	103	71	92	266
Elephant	90	76	90	256
Impala	98	92	90	280
	291	239	272	802

Wildlife: Material & Methods

Laboratory analysis:

- immunofluorescent antibody (IFA) commercial kit (anti- *Cryptosporidium parvum* monoclonal antibody technique)
- Ziehl Neelsen (ZN) detects all Cryptosporidium spp.

• Confirmation of Positives ZN & IFA with RT-PCR

Wildlife: Results

Prevalence with Ziehl-Neelsen staining

	Skukuza	Sabi Sand	Tshokwane	Total/species
Elephant	34.4%	35.7%	6.6%	25.8%
	(12/35)	(10/28)	(2/30)	(24/93)
Buffalo	3.2%	6.9%	6.6%	5.5%
	(1/31)	(2/29)	(2/30)	(5/91)
Impala	3.2%	5.9%	3.5%	4.2%
	(1/31)	(2/34)	(1/29)	(4/94)

Overall prevalence 11.8%

Wildlife: Results

Prevalence with **direct immunofluorescent antibody test** (IFA)

	Skukuza	Sabi Sand	Tshokwane	Total/species
Elephant	8%	0%	4%	4.2%
	(4/50)	(0/44)	(2/50)	(6/144)
Buffalo	2%	2.5%	0%	1.4%
	(1/50)	(1/40)	(0/50)	(2/140)
Impala	0%	5%	0%	1.8%
	(0/50)	(3/59)	(0/50)	(3/161)

Overall prevalence 2.5%

Variable	Level	OR	95% C.I. (OR)	P-Value
Area	Tshokwane	1*	-	-
	Sabi Sand	3.6	1.2;11.1	0.023
	Skukuza	2.9	1.0; 8.8	0.057
Species	Impla	1*	-	-
	Buffalo	1.3	0.3; 5.2	0.665
	Elephant	8.4	2.8;25.8	0.001

Results wildlife

•Prevalence was significantly higher in elephant than other species.

•Prevalence was higher in areas close to the fence

Wildlife: Main Conclusions

- Cryptosporidium spp. are present in KNP wildlife
 - Potential source of infection to livestock & human at the interface?
 - Is wildlife close to the fence more exposed?
- Prevalence might be higher than the one observed
 - Low sensitivity & specificity of ZN
 - Samples may contain genotypes that could not be detected
 - Analyzed samples: collected during dry season

Shert communication

The prevalence of Cryptosporidium spp. oocysts in wild mammals in the Kruger National Park, South Africa

Nada Albu Sanna^{1,4}, Ferran Janti, Amikko Santar⁶, Poter Thompson⁴ spinning innis lipstone distance transmission removed means from danie innovation of the data data "annexes of the data data in the spin of the data data and the "annexes of the data data data and the data data and the

Wildlife: Way forward

- Detection of all *Cryptosporidium* spp circulating in the wildlife population: PCR, genotyping & subtyping
- Analysis of seasonal variations (only dry season samples have been analyzed)

Livestock: Study Area

Bushbuckridge: 10 diptanks (•) located in close proximity to the fences of KNP & Sabi Sand

Livestock

- 1000 samples randomly selected
- Collected in rainy and dry season
- All ages
- immunofluorescent antibody (IFA) commercial kit (anti- *Cryptosporidium parvum* monoclonal antibody technique)

Results from dry season

• Overall prevalence: 1% (3/300)

Livestock: Main Conclusion

Low prevalence in cattle (1%):

- IFA test specific for the detection of *Cryptosporidium parvum* oocysts (species of major zoonotic importance)
- Other *Cryptosporidium* spp. might circulate in cattle

Livestock: Way forward

- PCR, genotyping & subtyping to detect and characterize *Cryptosporidium* strains in the cattle population.
- Analysis of seasonal variations (only dry season samples have been analyzed)

Human communities: Study Area

7 clinics located in communities in close proximity to KNP: Belfast Clinic Justicia Clinic Lillydale Clinic Lillydale Private Hospital Agincourt Clinic Calcutta Clinic Oakley Clinic

Human communities: Way forward

- Collection of human faecal samples (approx. 200)
- PCR, genotyping & subtyping of human samples to detect the presence of Cryptosporidium and the different Cryptosporidium spp.
- Determine the zoonotic importance of *Cryptosporidium* spp from livestock and wildlife origin.

Expected Results

- Detect different *Cryptosporidium* spp. circulating in the wildlife, livestock & human population
- Establish links between *Cryptosporidium* spp. in humans, livestock & wildlife.
- Comparison of different diagnostic methods

Activities 2011

- March 2011: Collection of human faecal samples in the study area (7 clinics in Bushbuckridge).
- April August 2011: PCR, genotyping & subtyping of *Cryptosporidium* of wildlife, cattle & human samples at National Center for Emerging and zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, USA

Acknowledgement

- National Veterinary Services in Mpumalanga -Dr Rikhotso & his Animal Health Technicians
- National Inistitute of Communicable Diseases (NICD) – Dr John Frean & Mrs Rita van Deventer
- SanParks
- French Embassy for funding part of my work

