

What could go wrong?

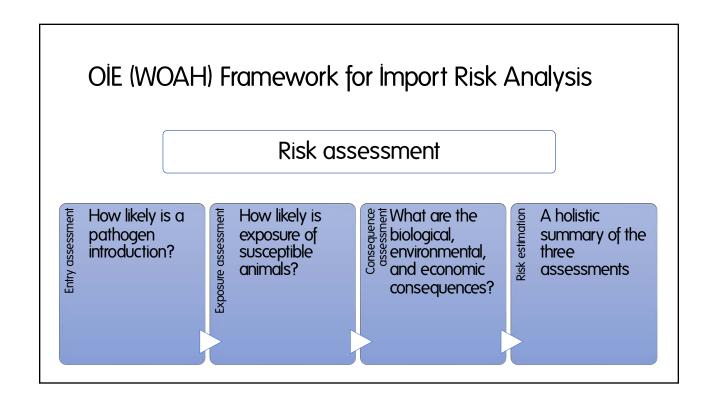
How likely is it to happen?

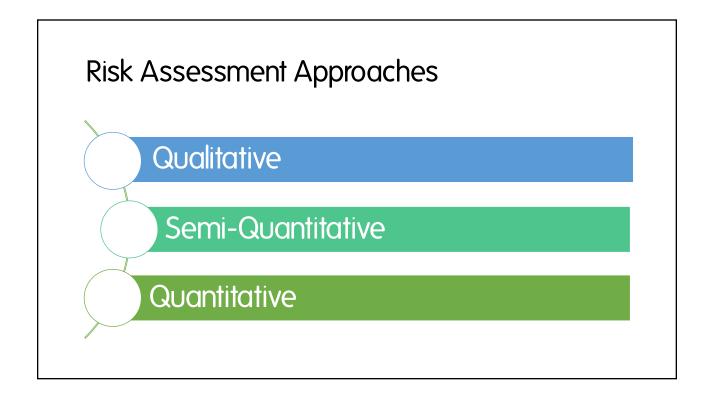
What is the magnitude of the consequences?

What could go wrong?

Identify hazards

Develop scenario tree


How likely is it to happen?


Collect data sources/elicit expert opinions Determine risks (qualitative/quantitative)

What is the magnitude of the consequences?

Consider biological, economic, and environmental

OİE (WOAH) Framework for İmport Risk Analysis Risk communication Risk management Risk assessment

Risk Level	Definition			
Negligible	Rare occurrence to be ignored			
Low	Rare but occurrence a possibility in some cases			
Medium	Regular occurrence			
High	Very regular occurrence			

Qualitative

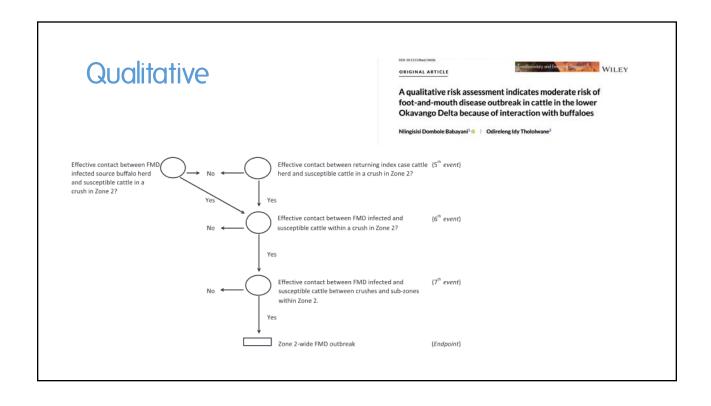
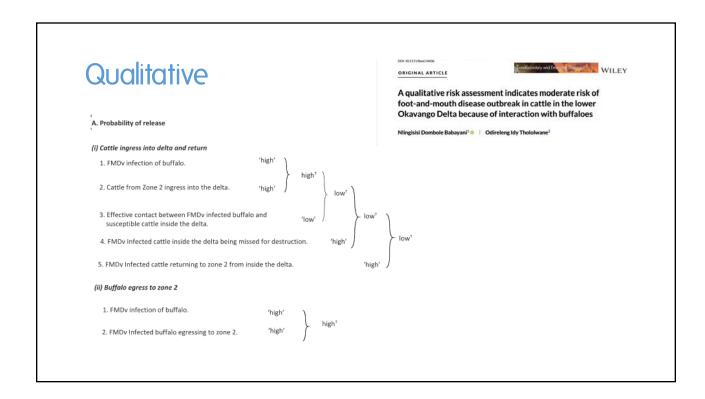



 TABLE 4
 Uncertainty categories for parameter value estimates depending on data availability (Fournié et al., 2014)

Uncertainty category	Interpretation
Low	There are solid and complete data available; strong evidence is provided in multiple references; authors report similar conclusions. Several experts have multiple experiences of the event, and there is a high level of agreement between experts.
Moderate	There are some but not complete data available; evidence is provided in a small number of references; authors report conclusions that vary from one another. Experts have limited experience of the event and/or there is a moderate level of agreement between experts.
High	There are scarce or no data available; evidence is not provided in references but rather in unpublished reports or based on observations, or personal communication; authors report conclusions that vary considerably between them. Very few experts have experience of the event and/or there is a very low level of agreement between experts.


ORIGINAL ARTICLE

A qualitative risk assessment indicates moderate risk of foot-and-mouth disease outbreak in cattle in the lower Okavango Delta because of interaction with buffaloes

Nilngisial Dombole Babayani | | | | | Odireleng Ish, Tholokwane |

 TABLE 2
 Combination matrix used for conditional events occurrence probabilities (Gale et al., 2010)

	Result of the assessment of Parameter 2					
Results of the assessment of Parameter 1	Negligible	Low	Moderate	High		
Negligible	Negligible	Negligible	Negligible	Negligible		
Low	Negligible	Low	Low	Low		
Moderate	Negligible	Low	Moderate	Moderate		
High	Negligible	Low	Moderate	High		

A Qualitative Risk Assessment of Rabies Reintroduction Into the Rabies Low-Risk Zone of Bhutan

Sangay Rinchen **, Tenzin Tenzin *, David Hall² and Susan Cork **

TABLE 1 | Qualitative probability scales with definitions used for assigning the probability to any factor or event in this assessment.

Likelihood scale	Definition				
Negligible	Likelihood of an event occurring is so rare that it does not merit consideration				
Extremely low	Likelihood of an event occurring is extremely rare but cannot be excluded				
Very low	Likelihood of an event occurring is rare but does occur				
Low	Likelihood of an event occurring is occasional				
Medium	Likelihood of an event occurring is regular				
High	Likelihood of an event occurring is very often				

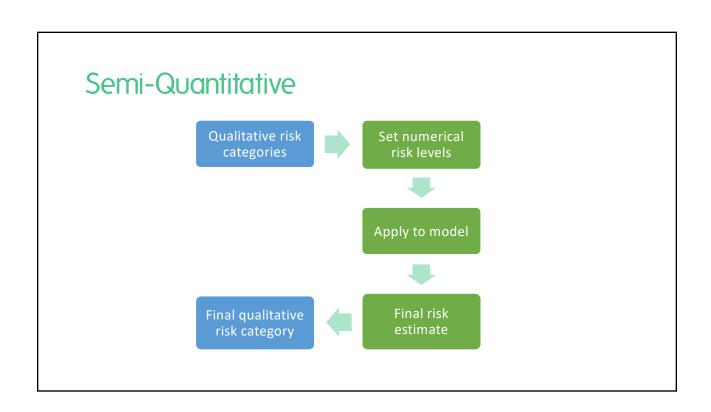
A Qualitative Risk Assessment of Rabies Reintroduction Into the Rabies Low-Risk Zone of Bhutan

Sangay Rinchen 1*, Tenzin Tenzin 1, David Hall 2 and Susan Cork 2*

TABLE 2 | Combination matrix used to combine two probabilities.

Probability	Negligible	Extremely low	Very low	Low	Medium	High
Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
Extremely low	Negligible	Extremely low	Extremely low	Extremely low	Extremely low	Extremely low
Very low	Negligible	Extremely low	Very low	Very low	Very low	Very low
Low	Negligible	Extremely low	Very low	Low	Low	Low
Medium	Negligible	Extremely low	Very low	Low	Medium	Medium
High	Negligible	Extremely low	Very low	Low	Medium	High

Concept adapted from Dufour et al. (15) when combining two probabilities, the resulting probability is not greater than the lower probability scale of the two.

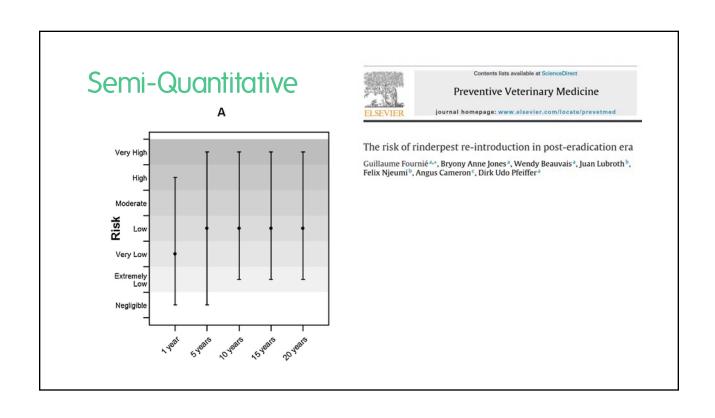

Qualitative

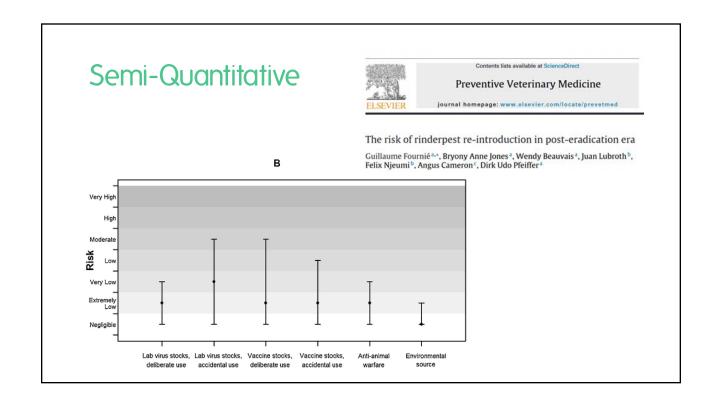
Pros

- Most commonly used, many examples
- Can be done even with minimal hard data

Cons

- Subjectivity in assigning risk
- Qualitative outcome




Semi-Quantitative

The risk of rinderpest re-introduction in post-eradication era Guillaume Fournié^{3,*}, Bryony Anne Jones³, Wendy Beauvais³, Juan Lubroth^b, Felix Njeumi^b, Angus Cameron^c, Dirk Udo Pfeiffer³

Category	Numerical range	Interpretation	
Negligible	[0; 10 ⁻⁹]	Event is so rare that its probability cannot be differentiated from zero, and in practical terms can be ignored	Close to 0
Extremely low	$[10^{-9}; 10^{-4}]$	Event is extremely rare but cannot be excluded	Occurs less often than 1 in 10,000 (10^{-4})
Very low	$[10^{-4}; 10^{-2}]$	Event is very rare	Occurs between 1 in $10,000 (10^{-4})$ and 1 in $100 (10^{-2})$
Low	$[10^{-2}; 10^{-1}]$	Event is rare	Occurs more often than 1 in $100 (10^{-2})$ up to 1 in 10
Moderate	[0.1; 0.5]	Event occurs sometimes	Occurs more often than 1 in 10 up to 5 times out of 10
High	[0.5; 0.8]	Event occurs often	Occurs more often than 5 times out of 10 up to 8 times out of 10
Very high	[0.8; 1]	Event occurs almost always	Occurs more often than 8 times out of 10

Semi-Quantitative

Pros

- Often used for rapid screening tools
- Considered more objective

Cons

- Not recommended by OİE guidelines
- Quantitative levels arbitrary

Quantitative

The foot-and-mouth disease risk posed by African buffalo within wildlife conservancies to the cattle industry of Zimbabwe

Paul Sutmoller^{a,*}, Gavin R. Thomson^b, Stuart K. Hargreaves^c, Chris M. Foggin^d, Euan C. Anderson^d

	A	В	C	D	E	F	G	FORMULAS
1	Probability	of buffalo i	infecting ar	telope		0.051		RiskNormal(0.051,0.09)
2	Days infect	ed antelope	is contagi	ous		3		RiskTriang(1,3,5)
3	Age in day	S				1582		RiskTriang(1,4,8)*365
4	Probability	that infecte	ed antelope	is contagio	us	0.002		E2/E3
5	Probability that any one antelope is contagious						0.0001	F1*E4
6	6 Number of antelope escaping the SVC / year				r	310	30 10100	Round(RiskPert(60,300,600),0)
7	Probability	that contag	gious antelo	pe escape ti	he			
8	SVC / year						0.03	1-(1-F5)^E6
9	Probability of antelope - cattle contact					0.1	RiskPert(0.05,0.10,0.15)	
10	Probability of antelope / cattle transmission				ssion		0.06	RiskUniform(0.02,0.10)
11	Probabil	ity of FM	D outbre	eak cattle	/yr		0.0002	PRODUCT(F8:F10)

Fig. 10. Excel/@RISK worksheet for transmission of FMD by buffalo to cattle resulting from antelopes jumping over perimeter fences of a wildlife-conservancy (Zimbabwe).

Quantitative

The foot-and-mouth disease risk posed by African buffalo within wildlife conservancies to the cattle industry of Zimbabwe

Paul Sutmoller^{a,*}, Gavin R. Thomson^b, Stuart K. Hargreaves^c, Chris M. Foggin^d, Euan C. Anderson^d

Table 1 Scenarios ranked by the annual risk of FMD posed to the cattle industry by buffalo within the Save Valley Conservancy in Zimbabwe

Scenario	Scenario description	Mean risk (10 000 iterations)	95th percentile
Antelope	Buffalo transmit FMD to cattle indirectly by infecting antelope that jump over the outer game fence of the conservancy (scenario 4)	1:5000	1:1500
Buffalo-escape	Buffalo transmit FMD to cattle following escape of buffalo from the conservancy through a major fence break (scenario 1)	1:200 000	1:60 000
Aerosol	Buffalo transmit FMD to cattle by aerosol transported across the perimeter fence by air currents (scenario 5)	10 ⁻⁵	$10^{-4.7}$
Cattle-enter	Buffalo transmit FMD to cattle entering and leaving the conservancy though a major fence break (scenario 2)	10 ⁻⁷ (if cattle are destroyed, risk=0)	10^{-6}
Sheep-and-goats	Buffalo transmit FMD to cattle indirectly by infecting sheep and goats entering and exiting a conservancy (scenario 3)	Less than 10^{-10}	

Quantitative

Pros

- Numerical estimate of risk
- Referenced data inputs
- Objectivity

Cons

- Data intensive
- Sensitivity to inputs
- Time consuming to build

Final Steps

- Make recommendations
- Prepare report
- Stakeholder engagement

A Unique Scenario for Risk Assessment

- Not starting at zero baseline risk
- Risk in association with fencing vs importation
- Risk in a TFCA context

Map: AHEAD, non-public report, adapted from Peace Parks Foundation

Recipe for Collab	Recipe for Collaborative Disease Risk Assessment				
Ingredients:	Directions:				

Thoughts for moving into breakout groups

Ingredients

- What should we be thinking about on the Namibian side of Zambezi and Western border fences?
- What data are available and should be included?
- If data are lacking, what expert opinions should be elicited?
- Who should be involved?
- How should local communities be engaged?

Directions

- What is the *current* level of risk, with fences as is?
- What pathways should be included for FMD?
 - Cattle, small ruminants, buffalo, antelope
- What should be involved in a holistic examination of consequences?
 - What positive outcomes might result from removing fences?
- What solutions can we offer for risk mitigation?